séparation par dimension - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

séparation par dimension - tradução para russo

Fifth Dimension; The Fifth Dimension

séparation par dimension      
см. séparation granulométrique
авиапочта         
  • ''Airmail stamps of Denmark'']].</ref>
  • индийской]] авиапочты в [[Аллахабад]]е ([[1911]])
  • почтовой]] компании ''[[DHL]]''
  • archivedate=2017-06-17}}</ref>.
  • авиапочтовой маркой]] (1932)
  • img5}}
  • Монреаля]] в [[Торонто]]}}
  • Марка ФРГ]] (1969) к 50-летию немецких авиапочтовых перевозок
  • 225}}
  • Почтовой службы США]] с маршрутом первого трансконтинентального авиапочтового сообщения из [[Нью-Йорк]]а в [[Сан-Франциско]], открытого 1 июля 1924 года}}
ВИД ПОЧТОВОЙ СВЯЗИ
Авиационная почта; Par avion
ж.
poste aérienne

Definição

Размерность
I Разме́рность (число измерений)

геометрической фигуры, число, равное единице, если фигура есть линия; равное двум, если фигура есть поверхность; равное трём, если фигура представляет собой тело. С точки зрения аналитической геометрии Р. фигуры равна числу координат, нужных для определения положения лежащей на этой фигуре точки; например, положение точки на кривой определяется одной координатой, на поверхности - двумя координатами, в трёхмерном пространстве - тремя координатами. Геометрия до середины 19 в. занималась только фигурами первых трёх Р. С развитием в середине 19 в. понятия о многомерном пространстве (См. Многомерное пространство) геометрия начинает заниматься фигурами любой Р. Простейшими фигурами размерности m являются m-мерные многообразия (См. Многообразие); m-мерное многообразие, расположенное в n-меpном пространстве, задаётся при помощи n - m уравнений (например, линия, т. е. одномерное многообразие, в трёхмерном пространстве задаётся 3 - 1 = 2 уравнениями). Положение точки на m-мерном многообразии определяется "криволинейными" координатами (например, положение точки на сфере определяется её "географическими координатами" - долготой и широтой; аналогично на торе). Приведённые выше положения справедливы лишь при некоторых ограничительных предположениях. Действительно общее определение Р. любого замкнутого ограниченного множества, лежащего в n-mepном евклидовом пространстве, было дано П. С. Урысоном: оказывается, для того чтобы такое множество имело размерность ≤ m, необходимо и достаточно, чтобы оно при любом ε > 0 допускало ε-Покрытие (замкнутыми множествами, имеющими кратность ≤ n + 1). Приведённое выше общее определение Р. допускает естественное обобщение на очень широкие классы топологических пространств (См. Топологическое пространство). Урысон построил в 1921 теорию Р. - одну из глубоких теорий современной топологии. Своим дальнейшим развитием теория Р. обязана главным образом советским математикам (П. С. Александров, Л. С. Понтрягин и др.).

Лит.: Александров П. С., Пасынков Б. А., Введение в теорию размерности, М., 1973.

II Разме́рность

физической величины, выражение, показывающее, во сколько раз изменится единица физической величины при изменении единиц величин, принятых в данной системе за основные. Р. представляет собой одночлен, составленный из произведения обобщённых символов основных единиц в различных (целых или дробных, положительных или отрицательных) степенях, которые называются показателями Р. Так, например, Р. скорости LT-1, где Т представляет собой Р. времени, а L - Р. длины. Эти символы обозначают единицы времени и длины независимо от их конкретного размера (секунда, минута, час, метр, сантиметр и т.д.). В ряде случаев Р. позволяет устанавливать связи между соответствующими величинами (подробнее см. Размерностей анализ).

Wikipédia

The 5th Dimension

The 5th Dimension — американская поп-соул-группа, образованная в 1965 году в Лос-Анджелесе, Калифорния; была лауреатом премий Грэмми (1968, 1970).